Pulmonary Complications of
Down Syndrome

Putting the Puzzle Together

Sherri Katz, MD, CM, FRCPC
Pediatric Respilologist
Children's Hospital of Eastern Ontario
University of Ottawa

Objectives

1) To identify the pulmonary complications Down Syndrome

2) To develop a comprehensive approach to diagnosis and treatment of pulmonary complications in Down Syndrome

Pieces of the Puzzle

- Structural abnormalities
- Pulmonary Hypertension
- Lower Respiratory Tract Infections
- GERD/Aspiration
- Sleep-disordered breathing
Case

• 6 y.o. ♦, Down syndrome, previous AVSD repair
• Lingering cough for 3 weeks following URTI, fever, respiratory distress
• Snores at night, increasingly restless sleep, daytime fatigue, poor concentration at school
• On exam: O₂ sat 93% in R/A, RR 30, mild indrawing, crackles RML
• CXR: RML infiltrate, subpleural cysts, normal heart size

Questions

• What is wrong with this child?
• Is it related to Down Syndrome?
• Is there more than 1 problem?
• How do I diagnose the problem?
• How do I treat?

Pieces of the Puzzle

Structural abnormalities

Lower Respiratory Tract Infections

Pulmonary Hypertension

GERD/Aspiration

Sleep-disordered breathing
Structural Abnormalities

Mid-facial
- Short nasal passages
- Small oropharynx
- Jaw hypoplasia
- Macroglossia
 - Not true macroglossia
 - Relatively large tongue for size of bony confines of oral cavity
- Laryngomalacia

Upper Airway
- Reduced upper airway size is due to soft tissue crowding within a smaller mid and lower face skeleton
- Adenoid & tonsil volume is smaller than controls (in those with no OSA Sx)
 > Uong, AJRCCM, 2001

Upper Airway & Chest Wall
- Choanal stenosis
- Subglottic stenosis
- Vascular rings
- ↑ incidence of 12th rib anomalies
- Pectus excavatum (18%)
- Pectus carinatum (11%)
Structural Abnormalities

Lungs

• Pulmonary hypoplasia
 » Cooney, NEJM, 1982
 – Contributes to respiratory failure
 – Study of biopsy specimens showed hypoplastic lungs more susceptible to mechanical stress from overinflation of lungs → post-op respiratory failure
 » Yamaki et al, Thorax, 1985

• Tracheal Bronchus
 – Abnormal RUL bronchus that arises directly from trachea
 » Kriss, Clinical Pediatrics, 1999
 – Prevalence 20% in small series of children with respiratory morbidity (RUL atelectasis)
 » Bertrand, Ped Pulmonol, 2003
 – Remove if bronchiectatic or stenotic bronchus with recurrent atelectasis/infection

• Subpleural cysts
 – 20% in one series
 – ↑ frequency in patients with CHD
 – Not seen on CXR
 – Symptoms not specific
 – ? May result from reduced postnatal production of peripheral small air passages and alveoli
Structural Abnormalities

Histology

- Advanced alveolar maturation
- ↓ alveolar number
- ↓ alveolar complexity secondary to deficient alveolar multiplication or acinar hypoplasia
- Contributes to pulmonary hypertension in 86%
 - Cooney, 1988
- Airway branching is reduced indicating early in utero impairment of growth
 - Shilo, Hum Pathol, 1991

Pieces of the Puzzle

Structural abnormalities

Lower Respiratory Tract Infections

Pulmonary Hypertension

Sleep-disordered breathing

GERD/Aspiration

Lower Respiratory Tract Infections

- Pneumonia a leading cause of death
- Respiratory tract infection is the most common recurrent problem giving rise to ill-health in children with Down syndrome
 - Selikowitz, J Pediatr Child Health, 1992
Lower Respiratory Tract Infections

- Most common reasons for admission to hospital are pneumonia, bronchiolitis and croup
 - 54% of 232 admissions over 6 years
- ICU admission required in 10%, of which 43% were for pneumonia
- Median length of stay in hospital is 2-3 times longer than for children without Down Syndrome
 - Hilton, J Paediatr Child Health, 1999
- OR for hospitalization 3.24 with Down Syndrome and heart disease
 - Kristensen, Arch Dis Child, 2009

Contributing factors:
- Chronic rhinitis
- Nasal and oral secretions poorly controlled
- Poor cough
- Airway obstructive lesion/compression by large heart
- Immune defects
- GERD/aspiration

Immunodeficiency

- Immune system derangements evident:
 - ↑ susceptibility to infection
 - ↑ mortality rate from infections
 - ↑ frequency of HBs Ag carriers
 - ↑ frequency of malignancies (leukemia)
 - ↑ frequency of auto antibodies (thyroid)
Immunodeficiency

Cell-Mediated Immunity

- Defective differentiation of T-cell lineage during intrathymic maturation resulting from lack of thymic hormone factors
 - Duse, Thymus, 1980
- Low # & activity of helper/inducer T-cell subsets → defective production of antibodies against certain antigens

Humoral Immunity

- Defective antibody responses to common antigens and influenza vaccine
- Hypogammaglobulinemia and IgG subclass deficiencies common
- Over-expression of superoxide dismutase-1 → impairment of neutrophil killing activity → susceptibility to bacterial infections
- Low serum zinc → impairment of immune response (co-factor for T-cell activation)
 - Treatment improves some immunologic parameters and may decrease infections
 - Licastro, J Intel Disability Research, 1994

Pieces of the Puzzle

- Structural abnormalities
- Lower Respiratory Tract Infections
- Pulmonary Hypertension
- GERD/Aspiration
- Sleep-disordered breathing
GERD/Aspiration

• Common problem encountered clinically, but little literature

Aspiration from above

• Retrospective chart review:
 – 19 patients, 16 referred for r/o aspiration
 – Underwent video fluoroscopic feeding study
 – 10 aspirated thin liquids, 8 silent aspirators.
 – None aspirated on thick liquids
 » Frazier, Developmental Med and Child Neuro, 1996

GERD/Aspiration

GERD

• 9% prevalence of GERD in adult hospital-based Down Syndrome clinic
 » Wallace, J Intell Dev Dis, 2007

• My experience: HIGHER prevalence in children referred to Respirology clinic for “recurrent pneumonia” or OSA

• 43% have serious complications from GERD
 » Moore, Pediatr Surg Int, 2008

GERD/Aspiration

GERD

• Treatment study comparing Nissen fundoplication with medical treatment with H2 blockers:
 – found fewer complications & readmissions with surgery
 – BUT had suboptimal medical management
 » Thompson, J Ped Surg, 1999

No clear answer regarding optimal treatment
Airway Obstruction

Contributing factors

- **Pharyngeal obstruction**
 - macroglossia, high arched palate, micrognathia, tonsillar hypertrophy
- **Functional Problems**
 - velar hypotonia, mucosal dryness, obesity
- **Nasal Obstruction**
 - narrow nasal airway, adenoid hypertrophy, rhinosinusitis
- **Malacia**
 - Pharynx, larynx, trachea
- **Subglottic stenosis/↓ airway size**

 » Clin Peds, 2004

Airway Obstruction

Most Common Causes:

- **Laryngomalacia** if < 1 month old

- **OSA** if > 2 years

OSA

• 40-80% have OSAS with nocturnal oxygen desaturation

• 55-97% of children with Down Syndrome have OSA
 > de Miguel-Diaz, Sleep, 2003; Shott, Arch Otolaryngol, 2006; Fitzgerald, Arch Dis Child, 2007; Ng, Arch Dis Child, 2007

• Poor correlation between parental impressions of sleep problems and sleep study result (50% error)
 > Shott, Arch Dis Child, 2006

• Over time all subjects had progression of sleep-related symptoms and persistent or worse OSA documented on PSG
 > Dyken, Arch Pediatr Otolaryngol, 2003

Other Sleep Disturbances

• Respiratory disturbance index is higher: sleep significantly fragmented with greater number of arousals

• More restless sleep: more leg kicks
 > Levanon, J Pediatr, 1999

Other Sleep Disturbances

• 66% of one series also had hypoventilation
 > Marcus, Peds, 1991

• Central sleep apnea more common than in controls and may predominate over obstructive events
 • ? Immaturity of brainstem control of respiration
 > Ferri, J Sleep Res, 1997
OSA

Clinical Features:
- Hx of snoring and difficulty breathing during sleep
- Retractions, paradoxical breathing, episodes of increased respiratory effort associated with lack of airflow (pauses in snoring)
- Gasping, choking, movement, arousal

Often under-recognized
- 68% have no clinical features

Risk factors for OSA:
- Age < 8 years (OR 3.36)
- Male (OR 3.32)
- Tonsillar hypertrophy (OR 5.24)
- ? BMI
 » Miguel-Diaz, Sleep, 2003

No association:
- Adenoid hypertrophy
- Previous T&A
- Congenital heart disease
- Malocclusion
- Macroglossia
 » Miguel-Diaz, Sleep, 2003
OSA

• **Sleep Study** = gold standard

- Oximetry can have false negatives, but detects severe OSA
 - > Brouillette, 2000

- Nap polysomnograms can underestimate severity
 - > Marcus, Peds, 1991

- Cine-MRI dynamic airway imaging can identify site of obstruction
 - > Shott, 2004

OSA

- **Treatment**

 • **T & A**
 - Fails in 30-50%
 - Glossoptosis 63%, macroglossia 74%
 - Hypopharyngeal collapse remains in 22%
 - Recurrent enlarged adenoids 63%
 - Enlarged lingual tonsils 30%
 - Often needs overnight stay in hospital post-op as co-morbidities
 - > Donnelly, 2004
OSA

Treatment

• CPAP/BiPAP
 – My experience:
 • Can be successful in the majority
 • PLAY – acclimatization to mask and pressure takes time
 • Tolerance builds over time
 – With time many develop hypoventilation

OSA

• UPPP & tongue reduction
 – results less impressive
 – < 25% success b/c of muscular hypotonia

• Lingual tonsils
 – Enlargement common if persistent OSA after T&A
 ➤ Fricka, Pediatr Radiol, 2006

• Tracheostomy

• GERD a co-morbid feature in 59-81%

OSA

Complications

• Impaired daytime functioning

• Pulmonary hypertension
Pieces of the Puzzle

- Structural abnormalities
- Pulmonary Hypertension
- Lower Respiratory Tract Infections
- GERD/Aspiration
- Sleep-disordered breathing

Pulmonary Hypertension

- Develops and progresses more rapidly to irreversible pulmonary vascular change in Down syndrome

- Contributing factors:
 - Chronic upper airway obstruction
 - Recurrent pulmonary infection
 - Alveolar hypoventilation
 - Congenital heart disease (10-100%)
 - Failure of neonatal pulmonary vascular remodeling (PPHN)

 » Shah, J Perinat Med, 2004

Pulmonary Hypertension

- 90% of children with Down syndrome and cardiac abnormalities vs. 24% of controls with similar CHD had abnormally high pulmonary arterial pressure. Children with T21 were younger on average than controls.

- 1 year after VSD repair pulmonary artery pressure remained elevated in ¾ with Down Syndrome vs. 14% of controls

 » Chi et al., J Peds, 1975
Pulmonary Hypertension

- Pulmonary artery changes were compared for children with simple cardiac anomalies with and without T21
- Pulmonary arteries of children with Down syndrome had:
 - Earlier development of intimal changes
 - More severe intimal changes
 - Less medial hypertrophy – makes PA’s more susceptible to moderate pressure loads

➤ Pulmonary artery changes predispose to earlier and more severe pulmonary vascular disease compared to controls
 > Yamaki, Am J Cardiology, 1983

Pieces of the Puzzle

Structural abnormalities

Lower Respiratory Tract Infections

Pulmonary Hypertension

GERD/Aspiration

Obstructive Sleep Apnea

Putting the Puzzle Together

Structural abnormalities

Lower Respiratory Tract Infections

Pulmonary Hypertension

GERD/Aspiration

Obstructive Sleep Apnea
Evaluation of the Child with Down Syndrome

• Respiratory Tract Infections
 – ? Recurrent vs. usual number
 – ? Single location or diffuse: review CXRs
 – Predisposing factors:
 » Immunodeficiency
 » Aspiration
 » Structural Abnormalities
 » Chronic sinusitis
 » Congenital heart disease

• GERD/Aspiration
 – From below: UGI, milk scan, pH probe
 – From above: OT feeding study

• Sleep Disordered Breathing
 – Overnight oximetry – useful screen, but if negative does not rule out OSA
 – Polysomnography is gold standard

Shh…may be silent

• Pulmonary Hypertension
 - Screen if congenital heart disease, OSA or hypoventilation
 - ECG – to look for right ventricular hypertrophy
 - Echocardiogram – to estimate right ventricular pressure
 - Cardiac Catheterization – gold standard, but more invasive
Resolution of the Case

• 6 y.o., Down syndrome, previous AVSD repair
• Cough for 3 weeks following URTI, fever, respiratory distress
• Snores at night, increasingly restless sleep, daytime fatigue, poor concentration at school
• On exam: O$_2$ sat 93% in R/A, RR 30, mild indrawing, crackles RUL
• CXR: RUL infiltrate, subpleural cysts, normal heart size

Resolution of the Case

• 6 y.o., Down syndrome, previous AVSD repair
• Cough for 3 weeks following URTI, fever, respiratory distress
• Snores at night, increasingly restless sleep, daytime fatigue, poor concentration at school
• On exam: O$_2$ sat 93% in R/A, RR 30, mild indrawing, crackles RUL
• CXR: RUL infiltrate, subpleural cysts, normal heart size

Resolution of the Case

• 6 y.o., Down syndrome, previous AVSD repair
• Cough for 3 weeks following URTI, fever, respiratory distress
• Snores at night, increasingly restless sleep, daytime fatigue, poor concentration at school
• On exam: O$_2$ sat 93% in R/A, RR 30, mild indrawing, crackles RUL
• CXR: RUL infiltrate, subpleural cysts, normal heart size
Resolution of the Case

- 6 y.o. †, Down syndrome, previous AVSD repair
- Cough for 3 weeks following URTI, fever, respiratory distress
- Snores at night, increasingly restless sleep, daytime fatigue, poor concentration at school
- On exam: O₂ sat 93% in R/A, RR 30, mild indrawing, crackles RUL
- CXR: RUL infiltrate, subpleural cysts, normal heart size

Case Resolution

- URTI → Cough, ↑ upper airway obstruction
- ↑GERD → Aspiration Pneumonia
- OSA → ↓ daytime performance
- Pulmonary Hypertension
The End

Now that all the pieces are put together...